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Appendix D
Third-Order Stationary Phase Theory

D.1 Maximum Flaring

At the first contact of a ray with a caustic surface, the radius of the first
Fresnel zone becomes infinite. Both the first and second derivatives of the
Fresnel phase function vanish at this point. In a geometric optics framework,
flaring in observed signal amplitude will be a maximum (in fact, infinite) at this
point [see Eqs. (2.2-5) and (2.2-6)]. In a Fresnel framework, the signal ampli-
tude will be large in this neighborhood, but not infinite, and the point where it
reaches a maximum may be slightly offset from the first contact point where
geometric optics based on a second-order theory predicts infinite signal power.

The maximum and the offset can be estimated using a third-order stationary
phase treatment and the thin phase screen model discussed in Chapter 2. Let us
expand the Fresnel phase function Φ h h, LG( )  defined in Eq. (2.5-1) in a Taylor

series about h† , the point of zero convexity, where ∂ ∂2 2 0Φ h = . We assume
that the stationary phase points where ∂ ∂Φ h = 0  are nearby; thus, the principal
contributions to the Rayleigh–Sommerfeld integral for the observed signal will
come from the immediate neighborhood about h† . When h†  is well away from
an integration end point, the integral I h E h i hLG LG LGexp( ) = ( ) ( )[ ]ψ  in

Eq. (2.5-1) becomes, to a good approximation,
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From the stationary phase and thin-screen methodology in Chapter 2, we have
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The Fresnel phase and its partial derivatives are evaluated at the zero convexity
point in h-space. We note that Φ† and ′Φ †  vary with hLG  and, therefore, with

time. However, ′′Φ †  (and, therefore, h† ) and also ′′′Φ †  are independent of hLG .
We also note in passing that a zero convexity point requires that the radial
gradient of the bending angle be positive, which is of course the same necessary
(but not sufficient) condition for the existence of a caustic. The integral in
Eq. (D-1) can be evaluated in terms of the Airy function of the first kind [1–3].

We make a change of integration variable in Eq. (D-1), ′′′ −( ) =Φ † † /h h z
3 36 ,

to obtain for the signal amplitude

I h
D

J a hLG LG˙
†

/

( ) =
′′′







 ( )[ ]1 6 1 3

λ Φ
(D-3)

where the function J a hLG( )[ ] is given by

J a i az z dz a( ) exp Ai /= +( )( ) = [ ]
−∞

∞ − −∫ 3 1 3 1 32 3 3π (D-4)

where Ai[ ]y  is the Airy function of the first kind. The quantity a is given by
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The function J x( )  in Eq. (D-4) is generated by the differential equation
d J dx xJ2 2 3= / . The solutions are oscillatory for negative x , and, for the case
where the boundary values are set by the exact numerical values of J( )0  and
′J ( )0  from Eq. (D-4), J x( )  damps to zero exponentially with increasing

positive x . In addition to diffraction problems, Airy functions arise in classical
electrodynamics in connection with the spectral properties of synchrotron
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radiation, and also in quantum mechanical potential well problems where the
positive z -regime corresponds to quantum tunneling processes. Airy functions
can be solved in terms of certain Bessel functions of fractional order ±1 3/ ,
which are tabulated. Airy functions of the first and second kind (the latter
grows exponentially large for increasing positive x ) provide the asymptotic
forms for the Bessel functions for large spectral number and argument.

Figure D-1 shows the behavior of J a( ) as a function of the parameter a
around zero, including the applicable asymptotic form for the positive regime.
The oscillatory behavior of the Airy function Ai[ ]y  for negative y  is shown in
[1]. Positive real values of a correspond to that range of hLG  values where no

real stationary phase points exist near h† . For negative values of a, two

stationary phase points for Φ h h, LG( )  exist at h h− = ± ′ ′′′† † †/ | |2Φ Φ . The
oscillatory behavior of J a( ) for the negative regime arises from the phase
interference between the contributions to Eq. (D-1) from the neighborhoods
around those two points.

A caustic contact point occurs when both ′′Φ †  and ′Φ †  (and a) are zero. At
this point, J( ) / ( [ / ]) .0 2 3 2 3 1 547= =π Γ . As time varies during an occultation,
hLG  varies nearly linearly and, consequently, so also does a. From Eq. (D-4),
setting dJ da = 0  yields the point of maximum flaring, which occurs at

a = −1 469. ; the maximum value of J a hLG( )[ ] is 2.334. Hence,
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and

3

Fig. D-1.  First lobe of the Airy function of the first kind.
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Thus, maximum flaring occurs at ˆ
LGh , which is offset from the first contact

with the caustic at h
LG

† , where h h D h h h h
LG

† † † † † †( ) ( ) / ( )= − = − ′α α α . For

example, the first contact point for the upper caustic in Fig. 2-25 (i.e., the one
where h hoLG − > 0 ) is predicted using the model in Eq. (2.8-33) to be located at

h hoLG

† m− = 600 , but Eq. (D-7) predicts an additional third-order offset of
ˆ ( ( )) mLG

† †h h D h− − =α 278  for maximum flaring, or a total of 878 m above
the boundary. The exact value of the location of the maximum flaring point
above the boundary is +846 m, which is the location shown in Fig. 2-25. This is
good agreement, considering that Eq. (D-1) is a truncated version of the
complete convolution integral given by Eq. (2.5-1). The value of I Max

predicted by Eq. (D-6) for this example is 1.52, which agrees with the exact
result shown in Fig. 2-25 to better than 1 percent.

This offset of the local maximum in intensity from the position of the
caustic has its analog in the theory of the rainbow. In 1838, George Airy first
demonstrated using ray optics that the scattering angle of any given color in the
rainbow, which is a caustic phenomenon, is similarly offset. The Airy function
of the first kind originates from his study of this problem [3].

D.2 Minimum Signal Amplitude in a Shadow Zone

A fade-out in signal amplitude occurs if the stationary phase points of the
Fresnel phase function Φ h h, LG( )  are located in neighborhoods of very large

convexity: | | | |∂ ∂ π λ α2 2 2 1 1Φ h D Dd dh= ( ) −( ) >> , so that only a small
contribution to the convolution integral in Eq. (2.5-1) is obtained from such
points. Thus, fade-outs are associated with very large gradients in the bending
angle of a certain polarity. In the limiting case, Φ h h, LG( )  has no stationary

values anywhere in h-space within the integration limits of Eq. (2.5-1). Since
Φ h h, LG( )  must grow infinite with increasing | |h , it follows for this extreme
case that ∂ ∂Φ h  must be discontinuous at some point, and so also must be the
bending angle. Two examples of such behavior in the Fresnel phase function
are shown in Fig. D-2. For this situation, the principal contributions to the
integral in Eq. (2.5-1) will come from those neighborhoods in h-space where
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∂ ∂Φ h  is a minimum, which will occur either at the cusp when the convexity
is positive throughout, as shown in Fig. D-2(a), or at one or more interior points
where ∂ ∂2 2 0Φ / h = , an example of which is shown in Fig. D-2(b). It is
possible for Φ h h, LG( )  to have a proper stationary phase point, but with a

convexity so large there that the principal contribution to the convolution
integral comes from some other neighborhood where ∂ ∂Φ h  is small but not
zero. An example is obtained from Fig. D-2(b) by simply “rounding” the cusp
point. Geometric optics fails when this type of condition applies.

Let us consider the simplest case of a single cusp and positive convexity
throughout, as shown by Fig. D-2(a). In this case, most of the contribution to
the Fresnel integral comes from the neighborhood around the cusp. Expanding
the Fresnel phase function in a Taylor series through second order about the

Fig. D-2.  Examples of Fresnel phase function convexity for 

a discontinuous refractivity: (a) positive convexity 

throughout and (b) positive and negative convexity.
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cusp position ho , and using the stationary phase approximation technique,
Eq. (2.5-1) becomes
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where x h ho= − . The superscripts “+” and “–” on the derivatives of Φ  denote,
respectively, the Fresnel phase functions applicable to each regime, which are
evaluated just above (for +) and just below (for –) the cusp position at
x h ho= − = 0 . Because we are dealing with a trough in signal-to-noise ratio

(SNR), the magnitude of the ratio ∂ ∂ ∂ ∂Φ Φo ox x/ /2 2  is necessarily large,
and the ratio itself will be negative in the “–” regime and positive in the “+”
regime. Therefore, we can use an asymptotic expansion for each Fresnel
integral. After completing the square and retaining the leading term in the
asymptotic expansion, Eq. (D-8) becomes
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If we use the thin-screen relation ∂ ∂ π λ αΦo o oh D h h D h± ±= − − ( )[ ]/ ( / ) LG2 ,

take the absolute value of Eq. (D-9), and minimize I hLG( )  with respect to hLG ,

we obtain a minimum at

h h
D

h ho o o− = ( ) + ( )( )− +
LG

†

2
α α (D-10)

The minimum value is given by

| | ˙MinI
D h ho o

=
( )− ( )









+ −

2 1
π

λ
α α

(D-11)

For a class of discontinuity as shown in Fig. D-2(a), the minimum of the trough
in SNR will be inversely proportional to the discontinuity in bending angle at
the boundary at h ho= . This form for the darkening in the discontinuous case
should be compared with the case where Φ h h, LG( )  has a single stationary phase

point in h -space (the position of which is a function of hLG ) but where
Φ h h, LG( )  has a very large convexity and the convexity is positive throughout

the range of integration in h-space. For this case, we obtain from the stationary
phase technique the form
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For a discontinuity as shown in Fig. D-2(b), where the principal part of the
contribution to the Fresnel integration comes from interior point(s) away from
the cusp, we will need to expand the Fresnel phase function about the points
where ∂ ∂2 2 0Φ / h = , as given in Eq. (D-1). As an example, let us assume that
there is only one zero convexity point in each regime located at h+  in the “+”
regime and at h−  in the “–” regime, which is taken to be below the “+” regime.
From the thin-screen model, h+  and h−  are defined respectively by the
conditions
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For this case,
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where a h±( )LG  is defined in Eq. (D-5) for each regime. From the thin-screen

model, Φ+  and Φ−  are given by
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One needs to find the minimum of I hLG( )  in Eq. (D-14) with respect to hLG ,

but the formal solution is tedious. It is easier to work with specific models in
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hand. Note also the interference arising from the cos( )Φ Φ+ −−  term, which
varies with hLG . Equation (D-14) may be considered as providing the
magnitude of the vector addition of the Fresnel integration vector component
from each regime. I hLG( )  will be minimized at that value of hLG , where these

two vectors maximally cancel each other upon addition.
For the ionospheric model used in Eq. (2.8-2), for which the Fresnel effects

are shown in Figs. 2-17, 2-18, and 2-19, the Fresnel phase function in the
trough of Fig. 2-19 (at h ho − =LG ~ m600 ) is shown schematically in
Fig. D-2(b). Here only one zero convexity point exists (for hLG  in the vicinity of
the trough). Thus, in this case the minimum of the SNR trough involves a trade-
off between the contribution to the integration from the zero convexity
neighborhood in the “–” regime and the contribution from the “+” regime at the
boundary. For this specific model, Eq. (D-14) becomes
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where, for h h r No o− >> −− ∆ , we have from Eqs. (2.5.1) and (2.8-3)
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Finding the minimum value of I hLG( )  with respect to hLG  from Eq. (D-16)

using these constraining relations in Eqs. (D-4), (D-17), and (D-18) is
straightforward, but in view of the complexity of the stationary phase technique
in this case, a straight integration of Eq. (2.5-1) seems simpler.

D.3 Accuracy of the Stationary Phase Technique

The stationary phase technique for integrating Eq. (2.5-1) traditionally has
been applied only at stationary points of the Fresnel phase function Φ h h, LG( )  or

at integration end points. Referring to Fig. 2-9, we see a case in Fig. 2-9(a)
where the technique works well, in spite of the reversals in polarity of the
convexity of Φ h h, LG( )  in h-space. In Fig. 2-9(b), the technique is compromised

by the additional contribution from the neighborhood around the zero convexity
point (near an altitude of 10 km) where | |∂ ∂Φ h  is a minimum, but not zero.
Lastly, in Fig. 2-9(c), we see a virtually hopeless case for the stationary phase
technique.

When a worrisome zero convexity point is well isolated from end points
and stationary phase points, we can use Eq. (D-3) to estimate its contribution to
the overall diffraction integral in Eq. (2.5-1). Let us call this contribution | |†I ,
which is given by Eq. (D-3) with the partial derivatives of Φ h h, LG( )  evaluated

at the zero convexity point h†  where | |∂ ∂Φ h  is a local minimum.
Let Φ h h, LG( )  for a given value of hLG  have a stationary value at

h h h= ( )*
LG , where h h*

LG( ) is defined by h h D hLG
* *− + ( ) =α 0 . Then,

applying the stationary phase technique at h*, one obtains for the amplitude of
the signal
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Using Eqs. (D-3) and (D-20), the ratio I I† */  is given by
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We require that I I† */ < ε , where ε , for example, might be 1 percent. Let a†  be that
value of a > 0  such that
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Then, from Eq. (D-5), the condition on ′Φ †  to achieve a relative accuracy of ε
with the stationary phase technique applied only to the stationary phase point is
given by
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For 1 percent accuracy, a†  typically would be in the range from 5 to 10.
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